DQ-09 Data Quality Scorecard
Module 0. About the Course (3 min)
Module 1. Case Studies (46 min)
- What is Data Quality Assessment?
- What is a Data Quality Scorecard?
- Data Quality Scorecard Case Study 1: Improving the Efficiency of the Risk-Weighted Asset (RWA) Calculation Process (Financial Company)
- Data Quality Scorecard Case Study 2: Data Quality Impact on Catastrophe Risk Modeling (Insurance Company)
Module 2. Data Quality Score Calculation Methods (37 min)
- Averages Method For Score Cards
- Record Level Score Calculations
- Subject Level Score Calculations
- Score Types Comparisons
- Score Decomposition By Business Dimensions
- Business Dimensions Versus Subjects
Module 3. Data Modeling Considerations Part 1 (55 min)
- Why DQMDW?
- DQMDW Components
- Case Study DQMDW For Property Insurance Company
- DQMDW: Critical Data Elements Catalog
- DQMDW: Rule Catalog
Module 4. Data Modeling Considerations Part 2 (68 min)
- DQMDW: Subject Master And Business Dimensions Master
- DQMDW: Error Catalog
- Error Details – Storage Options
- Rule Error Output – Advanced Examples
- DQMDW: Score Catalog
- DataMarts For DQ Visualization
Module 5. Building A Data Quality Scorecard Process (61 min)
- Process Overview
- Step 1 Define The DQ Assessment And DQ Scorecard Scope
- Step 2: Populate The Staging Area
- Step 3: Prepare The Data
- Step 3A: Add Record ID Step
- Step 3B: Fill Dataset AsOfDate
- Step 3C: Create/Update Subject Master List
- Step 3D: Create/Update Business Dimension Master Lists
- Step 4: Perform Data Profiling
- Step 5: Create and Code Data Quality Rules
- Step 6: Run DQ Rules
- Step 7: Move Rule Execution Results into DQMDW
- Step 8: Calculate Aggregate Scores
- Step 9: Examine DQ Scores and DQ Rule Results
- Step 10: Fine-Tune Data Quality Rules
Module 6. Data Quality Scorecard Demo (35 min)
- Overall Score Analysis
- Summary
Click
–here- to download a more detailed outline of this course.